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Abstract. We present analytical results for the correlator of baryonic currents at the three-loop level with one finite
mass quark. We obtain the massless and the HQET limits as particular cases from the general formula. Calculations have
been performed with an extensive use of the symbolic manipulation programs MATHEMATICA and REDUCE.

Baryons form a rich family of particles which has been
experimentally studiedwith highaccuracy [1].  A theoret-
ical analysis of these experimental data gives alot of in-
formation about the structure of QCD and the numerical
values of its parameters. The hypothetical limit  Nc ! ∞
for the number Nc of colours which is a very powerful
tool for investigating the general properties of gauge in-
teractions was especially successful for baryons[2]. The
spectrum of baryons is contained in the correlator of two
baryonic currents and the spectral density associated with
it. To leading order the correlator is given by a product of
Nc fermionic propagators. The diagrams of this topology
haverecently been studied in detail [3, 4, 5, 6, 7, 8]. They
are rather frequently used in phenomenological applica-
tions [9]. With the advent of new acceleratorsand detec-
torsmany propertiesof baryonscontainingaheavy quark
have been experimentally measured in recent years [1].
However, theoretical calculations beyond the leading or-
der havenot been donefor many interesting cases. In this
notewefil l up this gap.

We report on the results of calculating the α s correc-
tions to the correlator of two baryonic currents with one
finite mass quark and two massless quarks. We give an-
alytical results and discuss the magnitude of the α s cor-
rections. The massless and HQET limits are obtained as
special cases. Note that the massless case has been known
since long ago [10]. The mesonic analogue of our bary-
onic calculation was completed some time ago [11] and
has subsequently provided a rich source of inspiration for
many applications in meson physics.

A generic baryonic current has the form

j = εabc(uT
a Cdb)ΓΨc (1)

whereΓ is the Dirac matrix, in the followingΓ = 1.
The correlator of two baryonic currents is expanded as

i
Z
hT j(x) j̄(0)ieiqxdx = γνqνΠq(q

2)+mΠm(q
2): (2)

Here we show results for the functionΠ q(q2) and com-
pare it withΠm(q2) [12]. Thedispersion relation reads

Π#(q
2) =

1
128π4

Z ∞

m2

ρ#(s)ds
s�q2 (3)

where ρ#(s) = ρq;m(s) are the spectral densities. The
spectral density is the real object of interest for phe-
nomenological applications,
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Hereµ is the renormalization scale parameter,m is a pole
mass of the heavy quark (see e.g. Ref. [13]) and α s =
αs (µ). The leading order two-loop contribution is shown
in Fig. 1(a). This topology coincides with water melon
diagramsfor which ageneral method of calculation (with
arbitrary masses) has recently been developed [ 5, 6, 7].
The leading order results read

ρq
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0 = 1+9z�9z2� z3+6z(1+ z) lnz (6)

with z = m2=s. The next-to-leading order contribution is
given by three-loop diagrams with one external momen-
tum. For an arbitrary mass arrangement such diagrams
have not yet been calculated analytically. However, if we
take the case of one massive line, the result withinMS-
scheme can be obtained analytically and reads
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FIGURE 1. The calculated (a) two-loop and (b–e) three-loop topologies

The contributing three-loop diagrams are shown in Figs.
1(b) to (e). They have been evaluated using advanced
algebraic methods for multi-loop calculations along the
linesdecribed in Refs. [6, 11]. Thisresult should becom-
pared to

ρm
1 = 9+ 665

9 z� 665
9 z2�9z3

�
�

58
9 +42z�42z2� 58

9 z3� ln(1� z)

+
�
2+ 154

3 z� 22
3 z2� 58

9 z3� lnz

+4
�1

3 +3z�3z2� 1
3z3� ln(1� z) lnz

+12z
�
2+3z+ 1

9z2��1
2 ln2 z� ζ(2)

�
+4

�
2
3 +12z+3z2� 1

3z3�Li2(z)

+24z(1+ z)
�
Li3(z)� ζ(3)� 1

3Li2(z) ln z
�
: (8)

Our method of integration is a completely algebraic one
and therefore symbolic manipulation programs can be
used for performing the long calculations. Two indepen-
dent calculations of some steps were done using MATH-
EMATICA and REDUCE, the latter being rather actively
used for high energy calculations(see e.g. Ref. [14]).
  The results given in Eqs. (7) and (8) represent the full

next-to-leading order solution. Since the anomalous di-
mension of thecurrent in Eq. (1) isknown up to two-loop
order [15], theresultsshown in Eqs. (7) and (8) complete
the ingredients necessary for an analysis of the correlator
in Eq. (2) within operator product expansion at the next-
to-leading order level.

Two limiting cases of general interest are the near-
threshold and the high energy asymptotics. With our re-
sult given in Eq. (7) both limits can be taken explicitly.

In the massless limitz! 0 the corrections read
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Therefore we obtain
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For the momentum partρq(s) we retain theO(m2) cor-
rection. The relation between the pole massm and the
MS massmMS(µ) we have used reads

m = mMS(µ)
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In the near-threshold limitE ! 0 with s = (m+E)2

one explicitly obtains
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We have shown the coincidence with the result of the ex-
plicit HQET calculation,

mρm
thr(m;E) =C(m=µ;αs)

2ρHQET(E;µ) (15)

whereρHQET(E;µ) andC(m=µ;αs) with
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are taken from Refs. [16, 17], respectively. Note that the
higher order corrections inE=m to Eq. (14) can easily be
obtained from the explicit result given in Eq. (7).

Of interest is whether the two limiting expressions (the
massless limit expression as given in Eq. (11) and the
HQET limit expression in Eqs. (14) and (15)) can be used
to characterise the full function for all energies.

For this discussion we compare components of the
baryonic spectral function in leading and next-to-leading
order. In Fig. 2 and 3 we show the ratioρ#

1(s)=ρ#
0(s)

for # = m and #= q, respectively. In the following we
shall always use the specific renormalization scale value
µ = m if it is not written explicitly. One can see that a
simple interpolation between the two limits can give a
rather good approximation for the next-to-leading order
correction in the complete region ofs. We therefore con-
clude that in going even one order higher it is very likely



FIGURE 2. The ratio ρm
1 =ρm

0 in dependence of s

FIGURE 3. The ratio ρq
1=ρq

0 in dependence of s

that the full four-loop spectral density can be well ap-
proximated by the corresponding massless four-loop re-
sult which can be calculated using existing computational
algorithms [18, 19].

ACKNOWLEDGEMENTS

We want to thank Richard Kreckel for presenting our
poster at the conference. The present work is sup-
ported in part by the Volkswagen Foundation under con-
tract No. I/73611 and by the Russian Fund for Basic Re-
search under contract 99-01-00091. A.A. Pivovarov is an
Alexander von Humboldt fellow. S. Groote gratefully ac-
knowledges a grant given by the DFG, FRG.

REFERENCES

1. Particle Data Group, Eur. Phys. J. C3 (1998) 1

2. E. Witten, Nucl. Phys. B160 (1979) 57

3. F.A. Berends, A.I. Davydychev, N.I. Ussyukina,
Phys. Lett. 426 B (1998) 95

4. S. Groote, J.G. Körner and A.A. Pivovarov,
Phys. Rev. D60 (1999) 061701

5. S. Groote, J. G. Körner and A. A. Pivovarov,
Eur. Phys. J. C11 (1999) 279

6. S. Groote, J. G. Körner and A. A. Pivovarov,
Nucl. Phys. B542 (1999) 515

7. S. Groote, J. G. Körner and A. A. Pivovarov,
Phys. Lett. 443 B (1998) 269

8. S. Groote and A.A. Pivovarov,
Nucl. Phys. B580 (2000) 459;
A.I. Davydychev and V.A. Smirnov,
Nucl. Phys. B554 (1999) 391;
N.E. Ligterink, Phys. Rev. D61 (2000) 105010

9. J.O. Andersen, E. Braaten, M. Strickland,
Phys. Rev. D62 (2000) 045004;
S. Narison and A.A. Pivovarov,
Phys. Lett. 327 B (1994) 341;
T. Sakai, K. Shimizu and K. Yazaki,
Prog. Theor. Phys. Suppl. 137 (2000) 121;
S.A. Larin et al., Sov. J. Nucl. Phys. 44 (1986) 690;
J.M. Chung and B.K. Chung,
Phys. Rev. D60 (1999) 105001;
K. Chetyrkin and S. Narison,
Phys. Lett. 485 B (2000) 145;
H.Y. Jin and J.G. Körner, “Radiative correction of the
correlator for (0++;1�+) light hybrid currents” , Report
No. MZ-TH/00-11, hep-ph/0003202

10. A.A. Ovchinnikov, A.A. Pivovarov and L.R. Surguladze,
Sov. J. Nucl. Phys. 48 (1988) 358; Int. J. Mod. Phys. A6
(1991) 2025

11. S.C. Generalis, Report No. OUT-4102-13 (1984),
later published as J. Phys. G16 (1990) 367, see also
D.J. Broadhurst, Phys. Lett. 101 B (1981) 423;
D.J. Broadhurst and S.C. Generalis,
Report No. OUT-4102-8/R (1982)

12. S. Groote, J.G. Körner and A.A. Pivovarov,
Phys. Rev. D61 (2000) 071501(R)

13. R. Tarrach, Nucl. Phys. B183 (1981) 384

14. A.A. Pivovarov, Proceedings of the Conference “Pisa AI-
HENP 1995” , p. 301–306 [hep-ph/9505316]

15. A.A. Pivovarov and L.R. Surguladze, Yad. Fiz. 48 (1988)
1856 [Sov. J. Nucl. Phys. 48 (1989) 1117];
Nucl. Phys. B360 (1991) 97

16. S. Groote, J.G. Körner and O.I. Yakovlev,
Phys. Rev. D55 (1997) 3016

17. A.G. Grozin and O.I. Yakovlev,
Phys. Lett. 285 B (1992) 254

18. K.G. Chetyrkin and F.V. Tkachov,
Nucl. Phys. B192 (1981) 159;
F.V. Tkachov, Phys. Lett. 100 B (1981) 65

19. K.G. Chetyrkin and V.A. Smirnov,
Phys. Lett. 144 B (1984) 419


